高性價比的石英晶體諧振器超級適合用于兒童手表ABM10-20.000MHZ-E20-T,電感器的直流電阻受環(huán)境溫度和電感體固有自熱的影響。圖2為AMXLA-Q1040系列的DCR隨環(huán)境溫度升高而升高的變化情況。從圖中可以看出,石英晶振和大電感值的DCR比小電感值受溫度的影響更大。然而,作為DCR的百分比變化,從25°C到最大180°C的溫度變化將導(dǎo)致DCR約60%的線性增加,而不管電感值如何。
高性價比的石英晶體諧振器超級適合用于兒童手表ABM10-20.000MHZ-E20-T,例如,68uH電感在25°C時的DCR≈210mΩ。增加60%的直流電阻,在180°C下計算大約為336mΩ。作為比較,47uH電感在25°C時的DCR≈145mΩ,而在高溫時的DCR≈232mΩ。
DCR的增加通過增加直流損耗對電感的性能產(chǎn)生負面影響。隨著額外的損耗,產(chǎn)生更多的自熱,這是在擴展溫度應(yīng)用中降額電感的主要原因。因而貼片晶振也為廣泛應(yīng)用程序帶來極大的便利。
Manufacturer Part Number 原廠編碼 | Manufacturer廠家 | Series型號 | Type 系列 | Frequency頻率 | Package / Case包裝/封裝 |
ABM3C-24.576MHZ-D4Y-T | Abracon晶振 | ABM3C | MHz Crystal | 24.576MHz | 4-SMD, No Lead |
ABM3C-14.31818MHZ-D4Y-T | Abracon晶振 | ABM3C | MHz Crystal | 14.31818MHz | 4-SMD, No Lead |
ABS06L-32.768KHZ-T | Abracon晶振 | ABS06L | kHz Crystal (Tuning Fork) | 32.768kHz | 2-SMD, No Lead |
ABMM-11.0592MHZ-B2-T | Abracon晶振 | ABMM | MHz Crystal | 11.0592MHz | 4-SMD, No Lead |
ABM8G-14.31818MHZ-B4Y-T | Abracon晶振 | ABM8G | MHz Crystal | 14.31818MHz | 4-SMD, No Lead |
ABM8G-13.000MHZ-B4Y-T | Abracon晶振 | ABM8G | MHz Crystal | 13MHz | 4-SMD, No Lead |
ABM8G-30.000MHZ-B4Y-T | Abracon晶振 | ABM8G | MHz Crystal | 30MHz | 4-SMD, No Lead |
ABM8G-33.000MHZ-B4Y-T | Abracon晶振 | ABM8G | MHz Crystal | 33MHz | 4-SMD, No Lead |
ABM8G-20.000MHZ-B4Y-T | Abracon晶振 | ABM8G | MHz Crystal | 20MHz | 4-SMD, No Lead |
ABS07-LR-32.768KHZ-6-T | Abracon晶振 | ABS07-LR | kHz Crystal (Tuning Fork) | 32.768kHz | 2-SMD, No Lead |
ABM10-27.000MHZ-E20-T | Abracon晶振 | ABM10 | MHz Crystal | 27MHz | 4-SMD, No Lead |
ABM10-20.000MHZ-E20-T | Abracon晶振 | ABM10 |
3225貼片晶振 |
20MHz | 4-SMD, No Lead |
ABLS-LR-4.9152MHZ-T | Abracon晶振 | ABLS-LR | MHz Crystal | 4.9152MHz | HC49/US |
ABM10-25.000MHZ-E20-T | Abracon晶振 | ABM10 | MHz Crystal | 25MHz | 4-SMD, No Lead |
For example, the 68uH inductor has a DCR ≈ 210m? at 25°C. Adding 60% more DC resistance calculates to approximately 336m? at 180°C. For comparison, the 47uH inductor has a DCR ≈ 145m? at 25°C and a high temp DCR ≈ 232m?.
The increase in DCR negatively affects the inductor’s performance by increasing DC loss. With the additional loss, more self-heating is generated and is the primary reason for derating inductors in extended temperature applications.