86-0755-27838351
ECLIPTEK CRYSTAL QUARTZ老化測試呈現,Ecliptek是一家小有名氣的元器件供應商,秉持著創(chuàng)新的設計理念,以及對于品質的不懈追求,使得日蝕公司能夠在偌大的市場之中發(fā)現巨大的價值,同時又將有價值的石英晶振產品貢獻于市場之中,并得到廣大用戶的熱烈反響,正是這種對于產品極致的追求使得日蝕公司走向不一樣的路途,成就非凡的日蝕公司。
Eclitek是頻率控制市場公認的市場領導者。Ecliptek品牌專門生產可快速轉動的可編程晶體和MEMS振蕩器設備,可加快上市時間并消除長交付周期。Ecliptek由Abracon提供動力,該公司提供最新的技術設計支持和全球供應鏈靈活性,以解決客戶當今的獨特挑戰(zhàn)。
石英晶體的“老化”導致頻率隨時間變化,可能必須采取這種影響由客戶在設計電路時考慮取決于需要實現。石英老化的主要原因有兩個晶體,一個是由于傳質,另一個是因為強調.
質量轉移
設備封裝內的任何不希望的污染都可能將物質轉移到晶體中或從晶體中轉移出來,導致將改變頻率的石英坯的質量設備的。例如,用于安裝石英坯件會產生“排氣” 會在惰性氣體中產生氧化物質密封的水晶包裝里的空氣生產過程必須得到很好的控制。理想情況下制造方法盡可能干凈,以消除任何效果并給出良好的老化結果。
強調
這可能發(fā)生在石英晶體的各個組件中從石英坯料的加工環(huán)氧樹脂安裝粘合劑,晶體安裝結構以及器件中使用的金屬電極材料的類型。加熱和冷卻也會由于不同膨脹系數。系統(tǒng)中的應力通常隨著系統(tǒng)放松而隨時間變化,這可能導致頻率的變化。
實踐中的老齡化
當觀察晶體的示例老化測試結果時,可以看出,頻率的變化通常是在第一年最偉大,并隨著時間的推移而衰退。它必須然而,請注意,例如,如果指定了設備每年最大±5ppm;這并不意味著衰老5年后為±5ppm×5年,即±25ppm。在實踐中,示例的±5ppm老化裝置可能僅為±1ppm至運行第一年±2ppm,然后減少隨后幾年。對于10年內最大±10ppm的貼片石英晶振老化,通常使用通用“指南”盡管在現實中它通常比這個要少得多。是的甚至無法預測設備的確切老化在同一時間由同一批石英將表現出略微不同的老化特性。
生產過程必須從零件到部分,來自石英坯料的制造,電極尺寸及其位置,用于安裝石英及其固化熱剖面,都有輕微影響在頻率上。設備可能老化為負或正取決于內部原因一個批次往往遵循類似的結果。一般來說在90%以上的制造零件中,老化效應是負面的。
加速老化
頻率調整
制造商零件編號
供應商
描述
工作溫度
E1SJA18-14.31818M TR
Ecliptek晶振
CRYSTAL 14.31818MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-6.144M TR
Ecliptek晶振
CRYSTAL 6.1440MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-28.63636M TR
Ecliptek晶振
CRYSTAL 28.63636MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-13.000M TR
Ecliptek晶振
CRYSTAL 13.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-19.6608M TR
Ecliptek晶振
CRYSTAL 19.6608MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-9.8304M TR
Ecliptek晶振
CRYSTAL 9.8304MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-32.000M TR
Ecliptek晶振
CRYSTAL 32MHZ 18PF SMD
-
EA2025MA10-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 10PF SMD
-40°C ~ 85°C
EA2025MA10-32.000M TR
Ecliptek晶振
CRYSTAL 32.0000MHZ 10PF SMD
-40°C ~ 85°C
E1WCDA12-32.768K
Ecliptek晶振
CRYSTAL 32.7680KHZ 12.5PF TH
-10°C ~ 60°C
E1SJA18-18.000M TR
Ecliptek晶振
CRYSTAL 18.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-20.000M TR
Ecliptek晶振
CRYSTAL 20.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-14.7456M TR
Ecliptek晶振
CRYSTAL 14.7456MHZ 18PF SMD
-40°C ~ 85°C
E1SCA18-7.3728M TR
Ecliptek晶振
CRYSTAL 7.3728MHZ 18PF SMD
-40°C ~ 85°C
E1SEA18-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 18PF SMD
-20°C ~ 70°C
E1SEA18-12.000M TR
Ecliptek晶振
CRYSTAL 12.0000MHZ 18PF SMD
-20°C ~ 70°C
E1SJA18-10.000M TR
Ecliptek晶振
CRYSTAL 10.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-12.000M TR
Ecliptek晶振
CRYSTAL 12.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-11.0592M TR
Ecliptek晶振
CRYSTAL 11.0592MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-8.000M TR
ECLIPTEK晶振
CRYSTAL 8.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-3.579545M TR
Ecliptek晶振
CRYSTAL 3.579545MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-4.194304M TR
Ecliptek晶振
CRYSTAL 4.194304MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-16.9344M TR
Ecliptek晶振
CRYSTAL 16.9344MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-5.000M TR
Ecliptek晶振
CRYSTAL 5.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-13.500M TR
Ecliptek晶振
CRYSTAL 13.5000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-9.216M TR
Ecliptek晶振
CRYSTAL 9.2160MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-12.288M TR
Ecliptek晶振
CRYSTAL 12.2880MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-4.500M TR
Ecliptek晶振
CRYSTAL 4.5000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-15.000M TR
Ecliptek晶振
CRYSTAL 15.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-4.433619M TR
Ecliptek晶振
CRYSTAL 4.433619MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-16.384M TR
Ecliptek晶振
CRYSTAL 16.3840MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-6.7458M TR
Ecliptek晶振
CRYSTAL 6.7458MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-15.360M TR
Ecliptek晶振
CRYSTAL 15.3600MHZ 18PF SMD
-40°C ~ 85°C
E1SDA18-25.000M TR
Ecliptek晶振
CRYSTAL 25.0000MHZ 18PF SMD
0°C ~ 70°C
E1SJA18-4.9152M TR
Ecliptek晶振
CRYSTAL 4.9152MHZ 18PF SMD
-40°C ~ 85°C
E1SGA18-25.000M TR
Ecliptek晶振
CRYSTAL 25.0000MHZ 18PF SMD
0°C ~ 70°C
EA2532QA18-26.000M TR
Ecliptek晶振
CRYSTAL 26.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532QA18-20.000M TR
Ecliptek晶振
CRYSTAL 20.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532LA18-30.000M TR
Ecliptek晶振
CRYSTAL 30.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532QA18-13.560M TR
Ecliptek晶振
CRYSTAL 13.5600MHZ 18PF SMD
-40°C ~ 85°C
EB2532YA12-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 12PF SMD
-40°C ~ 125°C
EB1216JA10-26.000M TR
Ecliptek晶振
CRYSTAL 26.0000MHZ 10PF SMD
-40°C ~ 85°C
EB1620JA10-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 10PF SMD
-40°C ~ 85°C
EA2025JA18-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 18PF SMD
-40°C ~ 85°C
E1WSDA12-32.768K TR
Ecliptek晶振
CRYSTAL 32.7680KHZ 12.5PF SMD
-10°C ~ 60°C
EA2025JA18-32.000M TR
Ecliptek晶振
CRYSTAL 32.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2025JA10-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 10PF SMD
-40°C ~ 85°C
EB3250JA12-10.000M TR
Ecliptek晶振
CRYSTAL 10.0000MHZ 12PF SMD
-40°C ~ 85°C
EB3250AYA08-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 8PF SMD
-40°C ~ 125°C
EB3250YA12-12.000M TR
Ecliptek晶振
CRYSTAL 12.0000MHZ 12PF SMD
-40°C ~ 125°C
EB3250AYA08-10.000M TR
Ecliptek晶振
CRYSTAL 10.0000MHZ 8PF SMD
-40°C ~ 125°C
E1SJA18-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532LA18-25.000M TR
Ecliptek晶振
CRYSTAL 25.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532UA12-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 12PF SMD
-40°C ~ 85°C
EB2532JA12-30.000M TR
Ecliptek晶振
CRYSTAL 30.0000MHZ 12PF SMD
-40°C ~ 85°C
EB2532JA12-18.432M TR
Ecliptek晶振
CRYSTAL 18.4320MHZ 12PF SMD
-40°C ~ 85°C
EB2532YA12-18.432M TR
Ecliptek晶振
CRYSTAL 18.4320MHZ 12PF SMD
-40°C ~ 125°C
EB1216JA10-25.000M TR
Ecliptek晶振
CRYSTAL 25.0000MHZ 10PF SMD
-40°C ~ 85°C
EB1216JA10-32.000M TR
Ecliptek晶振
CRYSTAL 32.0000MHZ 10PF SMD
-40°C ~ 85°C
EB3250JA12-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 12PF SMD
-40°C ~ 85°C
EB3250YA12-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 12PF SMD
-40°C ~ 125°C
EB3250YA12-10.000M TR
Ecliptek晶振
CRYSTAL 10.0000MHZ 12PF SMD
-40°C ~ 125°C
EB3250YA12-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 12PF SMD
-40°C ~ 125°C
E3WSDC12-32.768K TR
Ecliptek晶振
CRYSTAL 32.7680KHZ 12PF SMD
-40°C ~ 85°C
E1SBA18-3.6864M TR
Ecliptek晶振
CRYSTALS 3.6864MHZ 50PPM 18PF PA
-
E1SBA18-7.3728M TR
Ecliptek晶振
CRYSTALS 7.3728MHZ 50PPM 18PF PA
-
E1SBA18-8.000M TR
Ecliptek晶振
CRYSTALS 8.000MHZ 50PPM 18PF PAR
-
E1SHA18-11.0592M TR
Ecliptek晶振
CRYSTALS 11.0592MHZ 15PPM 18PF P
-
E1SCA18-3.6864M TR
Ecliptek晶振
CRYSTALS 3.6864MHZ 50PPM 18PF PA
-
E1SFA18-8.000M TR
Ecliptek晶振
CRYSTALS 8.000MHZ 30PPM 18PF PAR
-
工程師使用晶體或振蕩器通常會知道整體穩(wěn)定性的數值他們的設備必須在特定的時間段內滿足要求。當裝置的公差和/或穩(wěn)定性降低時衰老變得越重要。例如使用溫度穩(wěn)定性為±1ppm的TCXO需要將老化保持在相對較小的值。但是,如果設計的總頻率移動裕量是示例±200ppm和額定值為±100ppm的設備則可以有效地進行少量老化已忽略。
The ‘ageing’ of a quartz crystal results in a small change of frequency over time and this effect may have to be taken into account by the customer when designing their circuit depending upon the overall specification that needs to be achieved. There are two main causes of ageing in quartz crystals, one due to mass-transfer and the other due to stress.
Mass-Transfer
Any unwanted contamination inside the device package can transfer material to or from the crystal causing a change in the mass of the quartz blank which will alter the frequency of the device. For example, the conductive epoxy used to mount the quartz blank can produce ‘out-gassing’ which can create oxidising material within the otherwise inert atmosphere inside the sealed crystal package and so this production process must be well controlled. Ideally the manufacturing method is as clean as possible to negate any effects and give good ageing results.
StressThis can occur within various components of the crystal from the processing of the quartz blank, the curing of the epoxy mounting adhesive, the crystal mounting structure and the type of metal electrode material used in the device. Heating and cooling also causes stress due to different expansion coefficients. Stress in the system usually changes over time as the system relaxes and this can cause a change in frequency.
Ageing in practice
When looking at example ageing test results of crystals, it can be seen that the change in frequency is generally greatest in the 1st year and decays away with time. It must be noted however that for example if a device is specified at ±5ppm max per year; it does not follow that the ageing after 5 yrs will be ±5ppm x 5yrs, i.e. ±25ppm. In practice, the example ±5ppm ageing device may be only ±1ppm to ±2ppm in the 1st year of operation and then reduces over subsequent years. It is common to use a general ‘guiderule’ for crystal ageing of ±10ppm max over 10 years although in reality it is usually much less than this. It is impossible to predict the exact ageing of a device as even parts made at the same time and from the same batch of quartz will exhibit slightly different ageing characteristics. The production process must be consistent from part to part, from the manufacture of the quartz blank, the electrode size and its placement, to the epoxy used to mount the quartz and its curing thermal profile, all have a slight affect on frequency. Devices can age negatively or positively depending upon the internal causes although parts from one batch tend to follow similar results. Generally the ageing effect is negative in over 90% of parts manufactured
Accelerated ageing
It is common industry practice to use an accelerated ageing process to predict long term frequency movement by soaking devices at elevated temperatures and measuring frequency movement at relevant intervals. It is normal to test crystals using a passive test (i.e. non-powered). The general rule used is that soaking a crystal at +85°C for 30 days is equivalent to 1 year of ageing at normal room temperature. If this test is extended for enough time then the recorded data can be plotted graphically to enable via extrapolation, the prediction of future long term ageing.
Frequency adjustment
Note that the ageing of quartz effectively changes the frequency tolerance of the crystal and does not directly influence the stability of the quartz over temperature to any great degree as this parameter is dictated by the ‘cutangle’ of the quartz used. If using quartz oscillators that have a voltage-control function such as VCXOs, TCXOs or OCXOs, the output frequency can be adjusted back to its nominally specified value.
The engineer designing a circuit using either a crystal or oscillator will generally know what overall stability figure their equipment must meet over a particular time period. As the tolerance and/or stability of a device decreases then the more important ageing becomes. For example using a TCXO at ±1ppm stability over temperature will require ageing to be kept to relatively small values. However, if the total frequency movement allowance of a design is for example ±200ppm and a device with a rating of ±100ppm is used then a small amount of ageing can effectively be ignored.